Broadband absorption of semiconductor nanowire arrays for photovoltaic applications
نویسندگان
چکیده
We use electromagnetic simulations to carry out a systematic study of broadband absorption in vertically-aligned semiconductor nanowire arrays for photovoltaic applications. We study six semiconductor materials that are commonly used for solar cells. We optimize the structural parameters of each nanowire array to maximize the ultimate efficiency. We plot the maximal ultimate efficiency as a function of height to determine how it approaches the perfect-absorption limit. We further show that the ultimate efficiencies of optimized nanowire arrays exceed those of equal-height thin films for all six materials and over a wide range of heights from 100 nm to 100 μm.
منابع مشابه
Semiconductor Nanowires for Solar Cells
This chapter discusses studies of semiconducting nanowire arrays for solar cells. The concept of 3D nanowire architectures for photovoltaic light harvesting to effectively decouple light absorption and carrier separation is presented. The available literature on semiconductor nanowire solar cell studies is summarized. Optical and electronic aspects specific to nanowires are discussed to illustr...
متن کاملBroadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that t...
متن کاملOptical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.
Optical properties are numerically investigated for vertically aligned silicon nanowire arrays with three types of structural randomness, i.e., random position, diameter, and length. Nanowire arrays with random position show slight absorption enhancement, while those with random diameter or length show significant absorption enhancement, which is attributed to the stronger optical scattering in...
متن کاملWavelength-dependent absorption in structurally tailored randomly branched vertical arrays of InSb nanowires.
Arrays of semiconductor nanowires are of potential interest for applications including photovoltaic devices and IR detectors/imagers. While nominally uniform arrays have typically been studied, arrays containing nanowires with multiple diameters and/or random distributions of diameters could allow tailoring of the photonic properties of the arrays. In this Letter, we demonstrate the growth and ...
متن کاملNear-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.
We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (<5% fill fraction) nanowire arrays achieve near unity absorption at wire resonant wavelengths due to coupling into 'leaky' radial waveguide modes of individual wires and wire-wire scattering processes. F...
متن کامل